Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis.
نویسندگان
چکیده
Strigolactones (SLs) or derivatives thereof have been identified as phytohormones, and shown to act as long-distance shoot-branching inhibitors. In Arabidopsis roots, SLs have been suggested to have a positive effect on root-hair (RH) elongation, mediated via the MAX2 F-box. Two other phytohormones, auxin and ethylene, have been shown to have positive effects on RH elongation. Hence, in the present work, Arabidopsis RH elongation was used as a bioassay to determine epistatic relations between SLs, auxin, and ethylene. Analysis of the effect of hormonal treatments on RH elongation in the wild type and hormone-signalling mutants suggested that SLs and ethylene regulate RH elongation via a common regulatory pathway, in which ethylene is epistatic to SLs, whereas the effect of SLs on RH elongation requires ethylene synthesis. SL signalling was not needed for the auxin response, whereas auxin signalling was not necessary, but enhanced RH response to SLs, suggesting that the SL and auxin hormonal pathways converge for regulation of RH elongation. The ethylene pathway requirement for the RH response to SLs suggests that ethylene forms a cross-talk junction between the SL and auxin pathways.
منابع مشابه
Multiple phytohormones promote root hair elongation by regulating a similar set of genes in the root epidermis in Arabidopsis
Multiple phytohormones, including auxin, ethylene, and cytokinin, play vital roles in regulating cell development in the root epidermis. However, their interactions in specific root hair cell developmental stages are largely unexplored. To bridge this gap, we employed genetic and pharmacological approaches as well as transcriptional analysis in order to dissect their distinct and overlapping ro...
متن کاملAuxin and ethylene promote root hair elongation in Arabidopsis.
Genetic and physiological studies implicate the phytohormones auxin and ethylene in root hair development. To learn more about the role of these compounds, we have examined the root hair phenotype of a number of auxin- and ethylene-related mutants. In a previous study, Masucci and Schiefelbein (1996) showed that neither the auxin response mutations aux1 and axr1 nor the ethylene response mutati...
متن کاملThe Arabidopsis root hair mutants der2-der9 are affected at different stages of root hair development.
Root hairs are an excellent model system to study cell developmental processes as they are easily accessible, single-celled, long tubular extensions of root epidermal cells. In a genetic approach to identify loci important for root hair development, we have isolated eight der (deformed root hairs) mutants from an ethylmethanesulfonate (EMS)-mutagenized Arabidopsis population. The der lines repr...
متن کاملAuxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators.
The plant hormones auxin and ethylene have been shown to play important roles during root hair development. However, cross talk between auxin and ethylene makes it difficult to understand the independent role of either hormone. To dissect their respective roles, we examined the effects of two compounds, chromosaponin I (CSI) and 1-naphthoxyacetic acid (1-NOA), on the root hair developmental pro...
متن کاملGenetic dissection of hormonal responses in the roots of Arabidopsis grown under continuous mechanical impedance.
We investigated the role of ethylene and auxin in regulating the growth and morphology of roots during mechanical impedance by developing a new growing system and using the model plant Arabidopsis (Arabidopsis thaliana). The Arabidopsis seedlings grown horizontally on a dialysis membrane-covered agar plate encountered adequate mechanical impedance as the roots showed characteristic ethylene phe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of experimental botany
دوره 62 8 شماره
صفحات -
تاریخ انتشار 2011